Mostrando entradas con la etiqueta 1II 2010-1 EES1 EVER TENEPPE. Mostrar todas las entradas
Mostrando entradas con la etiqueta 1II 2010-1 EES1 EVER TENEPPE. Mostrar todas las entradas

domingo, 25 de julio de 2010

The HI-MEMS

The HI-MEMS (Hybrid Insect Micro-Electro-Mechanical Systems) program instituted by DARPA is beginning to bear fruit. The University of Michigan team has successfully created a cyborg unicorn beetle microsystem.



(UM Cyborg Beetle Microsystem)

The research was showcased at MEMS 2008, an international academic conference on MEMS that took place from January 13-17 in Tucson, AZ. The embedded probe has four electrodes. One is implanted in the control region of the brain, with two others being placed in the right and left muscles that move the wings. The cyborg beetle is able to take off and land, turn left or right and demonstrate a number of other flight control behaviors.

HI-MEMS is a DARPA program initiated by Program Manager Dr. Amit Lal.

The HI-MEMS program is aimed at developing tightly coupled machine-insect interfaces by placing micro-mechanical systems inside the insects during the early stages of metamorphosis. These early stages include the caterpillar and the pupae stages. Since a majority of the tissue development in insects occurs in the later stages of metamorphosis, the renewed tissue growth around the MEMS will tend to heal, and form a reliable and stable tissue-machine interface. The goal of the MEMS, inside the insects, will be to control the locomotion by obtaining motion trajectories either from GPS coordinates, or using RF, optical, ultrasonic signals based remote control.

(UM Cyborg Beetle summary of implant survival )

Dr. Lal got the idea for remote-controlled insects from the 1990 science fiction novel Sparrowhawk, by Thomas A. Easton. Dr. Easton, a professor of science at Thomas College. In the novel, he writes about genetically engineered animals that are greatly enlarged, and then outfitted with implanted control structures.
"There's the brain, the spinal chord, the motor centers. A cable, here, from the controller to the interface plug... wires from that to the brain." She explained how the controller, a computer, translated movements of the tiller or control yoke and the throttle and brake pedals into electrical signals and routed them as appropriate to the jets or the genimal's motor centers, triggering the genimal's own nervous system into commanding its muscles to serve the driver. All the necessary programming was built into the hardware...

(Read more about the Roachster)

The final milestone at the end of phase three of the HI-MEMS project is flying a cyborg insect to within five meters of a specific target starting at a distance of one hundred meters. Researchers may use remote control or automated systems using global positioning system (GPS). If a research team passes this test successfully, then DARPA can begin breeding in earnest. As the pictures below demonstrate, the cyborg beetle is getting close to meeting the spec.


(UM Cyborg Beetle Microsystem in flight)

Electrical stimulation of wing muscles on either side initiates a turn. Beetles mounted on a long string (10 cm) were programmed with a continuous sequence of left, pause, right, pause instructions; each instruction lasted two seconds. (a) left flight muscle stimulation generates a right turn, followed by (b) a pause during which the beetle zigs and zags, followed by (c) right muscle stimulation which generates a left turn. Each photograph consists of ten frames; frames were taken every 0.2 seconds.

The vision of HI-MEMS - insect swarms with various sorts of different embedded MEMS sensors (like video cameras, audio microphones and chemical sniffers)could penetrate enemy territory in swarms. The HI-MEMS swarms could then perform reconnaissance missions beyond the capabilities of bulky human soldiers.

EVER TENEPPE 17767425
MATERIA:EES
SECCION:1
fuente:http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=1420

Tiny 'MEMS' devices to filter, amplify electronic signals

Tiny 'MEMS' devices to filter, amplify electronic signals
WEST LAFAYETTE, Ind. -

Researchers are developing a new class of tiny mechanical devices containing vibrating, hair-thin structures that could be used to filter electronic signals in cell phones and for other more exotic applications.

Because the devices, called resonators, vibrate in specific patterns, they are able to cancel out signals having certain frequencies and allow others to pass. The result is a new type of "band-pass" filter, a component commonly used in electronics to permit some signals to pass through a cell phone's circuitry while blocking others, said Jeffrey Rhoads, an assistant professor of mechanical engineering at Purdue University.

Such filters are critical for cell phones and other portable electronics because they allow devices to process signals with minimal interference and maximum transmission efficiency. The new technology represents a potential way to further miniaturize band-pass filters while improving their performance and reducing power use, Rhoads said.

The device is an example of a microelectromechanical system, or a MEMS, which contain tiny moving parts. Incoming signals generate voltage that produces an electrostatic force, causing the MEMS filters to vibrate.

Researchers have proposed linking tiny beams in straight chains, but Rhoads has pursued a different approach, arranging the structures in rings and other shapes, or "non-traditional coupling arrangements." One prototype, which resembles spokes attached to a wheel's hub, is about 160 microns in diameter, or comparable in size to a grain of sand.



Findings are detailed in a research paper to be presented on Sept. 2 during a meeting of the American Society of Mechanical Engineers' Third International Conference on Micro and Nano Systems. The conference runs from Aug. 30 to Sept. 2 in San Diego. The paper was written by Rhoads and mechanical engineering graduate student Venkata Bharadwaj Chivukula.

In addition to their use as future cell phone filters, such resonators also could be used for advanced chemical and biological sensors in medical and homeland-defense applications and possibly for a new type of "mechanical memory element" that harnesses vibration patterns to store information.

"The potential computer-memory application is the most long term and challenging," Rhoads said. "We are talking about the possibility of creating complex behaviors out of relatively simple substructures, similar to how in cellular biology you can have a relatively complex behavior by combining hundreds or thousands of simple cells."

The band-pass filter design promises higher performance than previous MEMS technology because it more sharply defines which frequencies can pass and which are rejected. The new design also might be more robust than the traditional linear arrangement, meaning devices could contain manufacturing flaws and still perform well.

The devices are made of silicon and are manufactured using a "silicon-on-insulator" procedure commonly used in the electronics industry to make computer chips and electronic circuits. The small, vibrating mechanical structures contain beams about 10 microns in diameter, which is roughly one-tenth the width of a human hair. The beams can be connected mechanically, like tiny springs, or they can be linked using electric fields and magnetic attractions.

"We are in the process of making a second prototype," said Rhoads, who has used simulations and also conducted experiments with the devices to demonstrate that the concept works.

The devices are being fabricated at the Birck Nanotechnology Center in Purdue's Discovery Park through a collaboration with Dimitrios Peroulis, an assistant professor of electrical and computer engineering.

The research is based at a new Dynamic Analysis of Micro/Nanosystems Laboratory at Birck. The lab, managed by Rhoads and mechanical engineering professor Arvind Raman, is equipped with an instrument called a scanning laser Doppler vibrometer, which uses a laser to measure the minute movement of the tiniest structures. The system is housed inside a vacuum chamber sitting on top of a special vibration-absorbing platform critical to making the precise measurements.

Other faculty members and graduate students also use the specialized facility.
The research is funded by the National Science Foundation through an NSF Faculty Early Career Development grant, awarded to outstanding young researchers. So far four Purdue researchers have received the grants this year. The research includes educational components using Purdue's nanoHUB - the Web portal of the Network for Computational Nanotechnology, also NSF-funded and based at Purdue - as well as Purdue's Summer Undergraduate Research Fellowship program.

Rhoads will develop and deploy on the nanoHUB a software tool to simulate the behavior of the resonators, a new K-12 education curriculum on emerging microelectromechanical and nanoelectromechanical systems, and college-level course materials and lectures associated with a new course on the systems.

EVER TENEPPE 17767425
MATERIA:EES
SECCION:1
FUENTE:http://news.uns.purdue.edu/x/2009b/090810RhoadsMEMS.html

Microsystems (MEMS) Industry

Microsystems (MEMS) Industry

Micro Electro Mechanical Systems (MEMS) technology is at the center of a rapidly emerging industry combining many different engineering disciplines & physics: electrical, electronic, mechanical, optical, material, chemical, and fluidic engineering disciplines. As the smallest commercially produced "machines," MEMS devices are similar to traditional sensors and actuators although much, much smaller. e.g. Complete systems are typically a few millimeters across, with individual devices and features of the order of 1-100 micrometers across.



Example of a MEMS switch, courtesy FEM-ware GmbHRF device. The response time of an electrostatic actuated beam is simulated. Actuation voltage, mechanical contact and fluid damping effects are simultaneously accommodated using our reduced order modellig (ROM) technique.

Microsystem Analysis Features

ANSYS Multiphysics has an extremely broad physics capability directly applicable to many areas of microsystem design. Coupling between these physics enables accurate, real world simulation of devices such as electrostatic driven comb drives. i.e.
• The ability to compute fluid structural damping effects is critical in determining the switching response time of devices such as micromirrors.
• Electro-thermal-structural effects are employed in thermal actuators.
• Fluid (CFD) capabilities are used to compute flow and free surface droplet formation useful in the design of ink-jet printer nozzles, and lab-on-chip applications.
The following diagram explains how ANSYS Multiphysics capabilities fits into your Microsystem/MEMS design process:



A sample of the features included in ANSYS Multiphysics are listed below:
• Structural static, modal, harmonic, transient mechanical deformation.
• Large deformation structural nonlinearities.
• Full contact with friction and thermal contact.
• Linear & non linear materials.
• Buckling, creep.
• Material properties: Temperature dependent, isotropic, orthotropic, anisotropic.
• Loads/Boundary conditions: Tabular, polynomial and function of a function loads.
• Plasticity, viscoplasticity, phase change.
• Electrostatics & Magnetostatics.
• Low Frequency Electromagnetics.
• High Frequency Electromagnetics. (Full wave, frequency domain).
• Circuit coupling - voltage & current driven.
• Acoustic - Structural coupling.
• Electrostatic-structural coupling.
• Capacitance and electrostatic force extraction.
• Fluid-Structural capability to evaluate damping effects on device response time.
• Microfluidics: Newtonian & non Newtonian continuum flow
• Free Surface VOF with temperature dependent surface tension.
• Charged particle tracing in electrostatic and magnetostatic fields.
• Electro-thermal-structural coupling.
• Piezoelectric & Piezoresistive transducers: Direct coupled structural-electric physics. Full isotropic, orthotropic parameters.
• Advanced themrolelectirc effect such as Seebeck, Peltier & thermocouple.
ANSYS MEMS Applications Overview
ANSYS Multiphysics can be applied to a broad range of Microsystem/MEMS analysis. The following table shows the analysis capability relevant for a range of applications. Select the application name or click the link in the "at a glance" section to the right to view a more detailed description.


EVER TENEPPE 17767425
MATERIA:EES
SECCION:1
fuente:http://www.ansys.com/industries/microsystems.asp

MEMS & MOEMS

MEMS & MOEMS




MEMS are Micro Electro Mechanical Systems that are typically fabricated using standard silicon microfabrication techniques and specialized micromachining processes. MEMS can include electrical and mechanical elements and their interactions.
Also, fluidic and optical elements can be incorporated into MEMS devices. At Kodak, major focus is on research in fluidic and optical MEMS devices. Optical MEMS, also known as MOEMS, is a specialized discipline of MEMS that incorporates photonics to the multifunctional devices. Many MEMS devices can be built on one silicon substrate, each with structures that are typically microns in size. At these small dimensions, forces that are not important at large dimensions can have major influence on the performance of the devices.

At Kodak, a comprehensive research program includes MEMS design, process, characterization and packaging of MEMS devices. Of special interest are devices that are fabricated using micro machining processes; these processes can be integrated with traditional silicon microelectronic fabrication to produce fully functional, addressable micro machines.
Kodak scientists are inventing MEMS devices for both continuous and drop-on-demand ink jet printing. MOEMS explorations include grating light valve modulating devices and shutter structures. Leveraging MEMS processing both at the Kodak Research Laboratories and through strategic partnerships, Kodak scientists must explore, apply and integrate a multitude of scientific competencies including:

• Physical chemistry and interfacial sciences with an emphasis on semiconductor and optical materials
• Device architecture and design
• Device physics and quantum optics for device optimization and characterization
• Finite element analysis and computer simulation for thermal, fluidic, optical and mechanical performance
• MEMS processing, packaging and characterization

EMS processing, based on traditional integrated circuit processes, includes thin film deposition, photolithography, and both dry and wet chemical etch processes. In addition, state-of-the-art MEMS processes such as deep reactive ion etching, thick film processing, lamination, sacrificial layer release and wafer bonding can be used to build complex structures. Wafer-to-wafer bonding can be used to build 3D structures as well as provide a mechanism for packaging of MEMS devices. Throughout the processing and packaging of these complex devices, special attention is paid to cleanliness, stresses, changes in material properties and reliability.

MEMS-powered Portable Blood Pressure Monitors

MEMS-powered Portable Blood Pressure Monitors

As people increasingly realize the importance of managing their own health, OMRON has responded with helpful devices such as home-use digital blood pressure monitors.
These devices have made it possible for people in their own homes to easily measure their blood pressure, which is an important indicator for health conditions. Recently, ultracompact and lightweight units such as finger- and wrist-type monitors enjoy a great deal of popularity because of their portability, which allows them to be used even when away from home on business or vacation.
Thanks in large part to MEMS technology, blood pressure monitors as small as a business card have become available. Though usually unnoticed by users of the product, these monitors incorporate the world's smallest MEMS pressure sensor for measuring blood pressure. The pressure sensor is a system that can detect and gauge the pressure of gaseous materials and liquids.

OMRON's sensor is very small yet is sensitive enough to measure blood pressure from a person's finger. The secret is in its "donut structure" created through MEMS micromachining technology. Although conventional pressure sensors use a disc configuration, the new donut structure can enlarge the blood pressure sensing area to five times that of conventional sensors, enabling super-high sensitivity in detecting pressure levels. In addition, conventional measurement methods were based on the detection of pressure changes, so the readings were affected by ambient temperatures.
To alleviate this drawback, OMRON developed a proprietary method that detects electrical capacitance changes. This led to the development of a MEMS pressure sensor capable of delivering accurate blood pressure readings regardless of environmental conditions.

Donut-shaped MEMS pressure sensor built into digital blood pressure monitors






1. A conventional disc-type sensor can use only 10% of its total area for sensing.
2. MEMS-based donut-type sensor can increase the sensing area to 50% of its total area.

EVER TENEPPE 17767425
MATERIA: EES
SECCION:1
FUENTE:http://www.omron.com/r_d/technavi/mems/about/portability.html

MEMS the Word 2

MEMS the Word 2

I like my Nintendo Wii, although I occasionally wake up the next day feeling sore (and old). Nintendo was brilliant to use the Wii to change the paradigm of gaming by making the motion-sensitive controller. In a similar way, Apple was brilliant to make the iPhone responsive to the orientation of the screen (plus it looked good in the ads.)



This shift in design and capability has been great for consumers, but it's also opened up opportunities for investment in the semiconductor sector. Both the iPhone and the Wii remote contain tiny machines located on a chip called an accelerometer, which is a type of MEMS device. MEMS, or microelectromechanical systems, are a class of chips that combine today's digital information with the analog world with which our devices come in contact.

They've been around for a while — measuring everything from the air pressure in tires to the moisture in clothes dryers — but each new innovation leads to the possibility of selling millions of chips into popular consumer devices. They may also be the future of medicine; MEMS cameras are already used in laparoscopic surgery and drug delivery. And recently funded companies like Nanochip may even one day use MEMS to offer better (and cheaper) memory.

Startups such as Discera, which makes timing components that could replace quartz; Siimpel, which is designing for cell phone/camera components; and Enpirion, which handles power management on a chip, are designing MEMS. The applications are practically endless as technology becomes less about gadgets and more about making life easier. MEMS can be used to make touch-sensitive controls on our appliances and sensors to determine if the lawn needs to be watered. Connect those with an IP network and the vision of a truly connected world becomes a reality.

The value of MEMS sold in 2007 was $7.1 billion; that's expected to grow to $14 billion by 2012, according to Yole Développement. As semiconductor markets go, it's not a huge one. There are also plenty of existing players, including Hewlett-Packard, Texas Instruments, Freescale and Analog Devices, which makes the accelerometers used by the Wii remote.

It's cheaper to produce MEMS, because they are typically built in older fabs. But manufacturing millions of such tiny devices correctly is challenging. They can also be temperamental, reacting to humidity and other sources of wear and tear thanks to their interaction with the real world.

Still, the market is wide open for new applications or innovations in existing chips. For a startup that can come up with something truly unique, they have the opportunity to shape the future in terms of product design, and make their investors a pile of money in the process.


EVER TENEPPE 17767425
MATERIA:EES
FUENTE:http://gigaom.com/2008/02/08/mems-the-word/

El nuevo Laboratorio de Innovación en MEMS (LI-MEMS) impulsará el desarrollo de microsistemas en México

El nuevo Laboratorio de Innovación en MEMS (LI-MEMS) impulsará el desarrollo de microsistemas en México

El pasado lunes 19 de abril se inauguró en Tonanzintla, Puebla, el Laboratorio de Innovación en MEMS (LI-MEMS) en el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), que forma parte del CONACYT.

La apertura de estas instalaciones convierte a México en uno de los pocos países con capacidad para elaborar sistemas micro electromecánicos (MEMS en inglés). El LI-MEMS es único en América Latina ya que sólo las universidades de Stanford y Berkeley en Estados Unidos cuentan con instalaciones similares.



A pesar de tratarse de una tecnología muy nueva, los MEMS han mostrado ser útiles en múltiples campos como las telecomunicaciones, la tecnología de cómputo, la industria automotriz, los dispositivos médicos, entre muchos otros.

La suma de esfuerzos de distintos actores fue crucial para la realización de este proyecto. Tanto el Gobierno del Estado de Puebla como la Secretaría de Economía a nivel federal y el mismo INAOE aportaron los recursos para la construcción del LI-MEMS, mientras que la empresa Motorola donó equipo con un valor de cerca de un millón de dólares.
La idea de crear el LI-MEMS surgió en 2004 cuando FUMEC propuso establecer una red de instituciones de investigación y desarrollo que permitiera el diseño y producción de prototipos MEMS, por lo que a lo largo de la ejecución del proyecto la Fundación facilitó las interacciones entre las instituciones participantes.

Cobertura en medios de la inauguración del LI-MEMS
El evento de inauguración del LI-MEMS tuvo una buena cobertura en los medios nacionales y locales. Algunas de las notas publicadas pueden consultarse a continuación
• Once TV: Inaugura INAOE el Laboratorio de Innovación en Sistemas Micro Electro Mecánicos

• La Crónica: Cuenta México con laboratorio para crear máquinas del grosor de un cabello

• El Universal: Incursiona México en nanotecnología

• Informador: Mexicanos diseñan sistemas nanoelectrónicos

• E-consulta: Inaugura INAOE nuevo laboratorio de alta tecnología; costó 30 mdp


EVER TENEPPE 17767425
MATERIA: EES
FUENTE:http://www.fumec.org.mx/v5/index.php?option=com_content&view=article&id=150%3Alimems&catid=42%3Amicrosistemas&Itemid=71&lang=es

COMSOL MEMS Module

COMSOL MEMS Module
Módulo de COMSOL Mphs. con capacidades multifísicas para el diseño desistemas microelectromecánicos (requiere COMSOL Multiphysics)


DESCRIPCIÓN
El MEMS Module proporciona a COMSOL Multiphysics modos de aplicación especializados para el estudio de las físicas acopladas, involucradas en los dispositivos MEMS. Su amplia librería de modelos proporciona una extensa variedad de modelos listos para ser utilizados que además de ilustrar los principios básicos también permiten penetrar a través del diseño de dispositivos complejos reales.
VISIÓN GENERAL

El módulo MEMS Module está disponible como una extensión de COMSOL Multiphysics y es un entorno de modelado multifísico para la investigación y diseño de sistemas microelectromecánicos. Entre sus grandes ventajas podemos destacar que cubre todos los fenómenos físicos acoplados que existen en los dispositivos MEMS. A estas físicas se accede a través de interfaces gráficas personalizadas que han sido diseñadas específicamente para aplicaciones con piezoeléctricos, flujo electrocinético y aplicaciones de carga plana y deformación. También permite acceder al motor computacional de COMSOL y a sus otros módulos físicos para el acoplamiento de todos los tipos de física en un único diseño.
CARACTERÍSTICAS PRINCIPALES

• Modos de aplicación específicos para MEMS (electrostática, carga y deformación, piezoeléctricos, electrocinética)
• Capacidad de manejar deformaciones y contornos móviles con análisis ALE (arbitrary Lagrangian-Eulerian)
• Grandes deformaciones, tensión residual y modelado "stress-stiffening".
• Acoplamiento piezoeléctrico
• Flujos electrocinéticos, electrosmóticos y electroforesis.
• Calentamiento Joule
• Conductividad de superficie
• Acoplamientos electromecánicos, termomecánicos y fluídico-estructurales
• Mallado de alta relación de aspecto
• Todas las funcionalidades en COMSOL Multiphysics, incluyendo la solución simultánea de un número arbitrario de PDEs acopladas, lineales, no lineales y dependientes del tiempo.
INFORMACIÓN DEL FABRICANTE
COMSOL Multiphysics y todos sus módulos han sido desarrollados por la empresa COMSOL, fundada en 1986 en Estocolmo (Suecia), que desde su inicio se ha especializado en los campos de ingeniería, matemática aplicada y física. COMSOL también es el desarrollador de la PDE Toolbox de MATLAB.
ÁREAS DE APLICACIÓN
Con el MEMS Module se pueden investigar un conjunto de fenómenos físicos que, cuando se configuran para problemas acoplados, forman la base para el diseño de los dispositivos MEMS. Por poner algunes ejemplos citaremos:
• Electromecánica
o Contornos móviles con análisis ALE (arbitrary Lagrangian-Eulerian
o Cálculos de capacitancias con análisis
• Termomecánica
o Tensión residual
o "Stress-stiffening"
o Pandeo
o Actuadores de expansión térmica
o Calentamiento Joule
• Interacciones fluídico-estructurales
o Amortiguamiento de película delgada
o Mallas y contornos móviles con análisis ALE
• Microfluídica
o Flujo electrocinético (difusión, convección, migración)
o Flujo electrosmótico
o Electroforesis/dielectroforesis
o Efectos electrotérmicos
VERSIONES
La última versión de MEMS Module es la 3.5, de la que se describen a continuación sus principales novedades.
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.5
• Soporte general para amortiguamiento y pérdidas en piezo (amortiguamiento estructural más pérdidas de dieléctrico y acoplamiento.
• Endurecimiento de tensión y grandes deformaciones en aplicaciones piezo.
• Soporte para circuitos SPICE
• Importación ECAD (ver AC/DC Module)
• Estabilización de la ecuación de superficies de nivel para mejoras en el modelado de flujo multifase.
• Modo de aplicación de campo de fase para modelado de flujo multifase utilizando el método de campo de fase.
• Todas las nuevas características introducidas también en el módulo Structural Mechanics Module.
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.4
• Modo de aplicación piezoeléctrico mejorado que es compatible con los modos de aplicación para electrostática y corrientes eléctricas y donde se puede cambiar el modelo del material estructural (piezo/isótropo/anisótropo/off) y la parte eléctrica (on/off)
• Base de datos de propiedades de materiales piezoeléctricos
• Modo de aplicación de convección y difusión
• Mejoras en la usabilidad del contacto (elección automática de factores de penalidad)
• Exportación desde COMSOL Reaction Engineering Lab
• Modo de aplicación de amortiguamiento de película extendido con condición de contorno de amortiguamiento deslizamiento-película
• Mejora y reorganización de condiciones de contorno para modelado fluido-flujo
• Método de mínimos cuadrados Galerkin (GLS) mejorado para difusión aerodinámica
• Nuevos modelos:
o Efectos piezoresistivos en un dispositivo incorporado en un botón elevador
o Operación de un giróscopo influenciado por amortiguamiento deslizamiento-pelicular
o Influencia sobre la frecuencia de resonancia de un gase adsorbido en un sensor SAW utilizando el nuevo modo de aplicación Tensión Plana Piezo
o Microrreactor con configuración de mecanismo de reacción utilizando la nueva característica de importación de Reaction Engineering Lab
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.3a
• Nueva interfaz para flujo de dos fases
• Interfaces predefinidas (modos de aplicación) para funciones de nivel y flujo de dos fases utilizando "level sets", incluyendo condiciones de contorno especiales para paredes humedecidas (adherencia de pared) e interfaz de fluido inicial.
• Mejora de rendimiento del contacto con simetría axial y general
• Nuevo modelo de llenado de capilar: el modelo simula el llenado de un canal estrecho debido a tensión superficial y adherencia de paredes. El modelo utiliza el nuevo modo de aplicación "Level Set Two-Phase Flow, que incluye la condición de contorno predefinida para paredes humedecidas (adherencia de pared)
• Nuevo modelo de inyector de tinta -Inkjet: Este modelo ahora utiliza el nuevo modo de aplicación "Level Set Two-Phase Flow".
• Otros modelos incluidos: Expansión térmica - Electrocinética CA 2D - Comb Drive - Mezclador de láminas
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.3

• Amortiguamiento mejorado
o Amortiguamiento de factor de pérdidas
o Amortiguamiento viscoso equivalente (para modelos piezoeléctricos)
o Análisis de frecuencias propias amortiguadas; factor de decaimiento y factor de calidad
• Acoplamientos multifísicos preparados
o Flujo electroosmótico
o Amortiguamento de capa fina
o Interacción fluido-estructura
• Restricciones fáciles de usar
• Análisis de frecuencias propias amortiguadas
• Nuevos modelos
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.2

• En la v. 3.2b se introducen nuevos acoplamientos predefinidos para flujo con transporte de especies.
• Modo de aplicación de flujo laminar general para aplicaciones microfluídicas con flujo de Stokes y condiciones de contorno especializadas para flujo laminar completamente desarrollado y velocidad electrocinética.
• Seis modelos actualizados.
CARACTERÍSTICAS PRINCIPALES DE LA VERSIÓN 3.1

• Interfaces de modelado dedicadas para:
o análisis de sólidos, tensión plana, esfuerzo plano y simetría axial
o efectos piezoeléctricos
o flujo electrocinético
o electrostática y medios conductivos CC
• Casi dos docenas de entradas en la Librería de Modelos, entre ellos análisis de un microactuador comb drive activado electrostáticamente, interacciones fluido-estructura con contornos móviles, y análisis de un microespejo pretensado

Ever teneppe 17767425
Materia: EES
Fuente: http://www.addlink.es/productos.asp?pid=423

MEMS The Word

MEMS The Word

What are the most innovative electronics gadgets on the market today? Few would dispute nominees like Apple's iPhone or Nintendo's motion-sensing videogame console, the Wii.

But how many of us know that a key part of their technological edge comes from micro-electrical mechanical systems, or MEMS? In the case of these two motion sensing gadgets, tiny silicon-etched MEMS accelerometers detect motion and changes in orientation, allowing the iPhone users, for example, to rotate images or Web pages 90 degrees when the phone is turned on its side.

This is just the beginning. Soon programmers will take full advantage iPhone's triple-axis MEMS accelerometers to make impressive new motion sensing uses for iPhone, including videogames. Nintendo's (other-otc: NTDOY - news - people ) Wii videogame system also uses MEMS. And "Guitar Hero III" players can thank MEMS for boosting their score when they raise the neck of a guitar-shaped videogame controller toward the living room ceiling.
In Pictures: Top MEMS Products

Conceptually, MEMS straddle the threshold between the mechanical and digital worlds, converting physical forces into digital information, and fabricated with the same silicon-etch process used to make integrated circuit chips. Instead of transistors, the process yields tiny, micromachined structures. Package these structures with digital circuits, and you have a MEMS chip, which can become an accelerometer, resonator, gyroscope, switch pressure sensor, filter or even a microphone.
Special Offer: Nanotechnology could be the U.S. Department of Homeland Security's secret weapon to thwart evil-doers. Find out which nanotech companies stand to profit. Click here to download How Nanotech Will Help Win the War Against Terror, free with your trial of the Forbes Wolfe Emerging Tech Report.

Until about three years ago, the only places to find MEMS at work were in automotive airbag systems, industrial process controls, inkjet printers and projectors and displays. These areas, particularly inkjet printer heads, should continue to generate most revenue for the MEMS market in the near future.

In fact, Hewlett-Packard (nyse: HPQ - news - people ), with $850 million in annual MEMS revenues from its inkjet printer head business, supplanted Texas Instruments (nyse: TXN - news - people ) as the top MEMS manufacturer last year, according to French market research firm Yole Développement. Texas Instruments derives its MEMS revenues largely from its digital light processor (DLP) technology, which steers and focuses light in high-resolution projectors and displays. Generally, MEMS and MEMS-based products don't contend with the same competitive pressures as semiconductors or displays, but as Texas Instruments demonstrates, they aren't immune to it, either. Texas Instrument's MEMS revenue dropped 10% from 2006 to 2007, according to Yole, as DLP chips have come under heavy pricing pressure in the past year.


It's a catch 22. As MEMS' average selling price has dropped, it has opened or expanded new end-markets for rapidly emerging MEMS technologies like tri-axis accelerometers and radio-frequency MEMS switches. But the relatively low average selling price that fuels volume growth also promises to put a drag on overall revenue growth for several years. Yole expects MEMS volumes to increase 30% over last year, while the growth in total market value will track closer to 9%. Revenue growth will accelerate as increasing volumes drive revenues closer to a compound annual growth rate of 12% to 13%, helping MEMS to exceed a projected $13.4 billion market in 2012.


Where will this growth occur? Telecom, defense and aeronautics will continue to drive revenue for MEMS of all stripes. But from a product standpoint, the fastest growth will be seen in conventional device categories like accelerometers and radio frequency MEMS that target consumer applications.
MEMS accelerometers, in particular, are driven by the visible value of the Wii and iPhone, and have fueled steady or accelerating unit sales from 2006 to 2007 for companies like STMicroelectronics (nyse: STM - news - people ), Freescale Semiconductor (nyse: FSL - news - people ) and Analog Devices (nyse: ADI - news - people ). Because they detect changes in motion and orientation, they're a natural fit for automotive airbag sensors. As automakers increase the number of airbags per car, the market for these devices is expected to continue growing by about 4%.


But the real action is away from the auto. According to ABI Research's Douglas McEuen, the emerging consumer sector could help spark 40% compounded annual growth for MEMS accelerometer units from 2007 to 2012, paced by 20% growth in sales.
Nintendo's Wii console alone surpassed 20 million units last year. Each console comes with a controller system that incorporates two MEMS chips, but players often double the fun by buying a second controller to play alongside friends.
Cellphones could become the next big growth driver.

"The handset market is over a billion mobile phones today, and adoption is still in the low single-digits there," said Mark Martin, general manager and vice president of Micromachined Products at Analog Devices (nyse: ADI - news - people ). "But, in a billion-unit market, even a 20% adoption rate is huge, and that's just accelerometers--nevermind MEMS microphones."


The number of cellphone applications for MEMS microphones doubled between 2005 and 2006 to reach 20% of mobile phones manufactured, according to The Information Network. Then the rate of adoption hit the skids, slowing to 12.4% growth last year as a result of strong price pressure from Bluetooth devices and an overall slowdown of new phone production.


Cellphone handsets practically define their own separate MEMS sector, going beyond accelerometers and microphones to include RF switches and oscillators, and passive parts like filters, duplexers and resonators. The diversity and range of opportunities has attracted an increasing number of start-up companies that have targeted one or more of these applications.

Investors waiting for MEMS start-ups to go public are more likely to see them acquired by incumbents, probably when their technology shows some proven value. The leaders will likely be the current incumbents, like Analog Devices and Freescale. Both Analog and Freescale have reportedly developed wireless crash sensors that fit into the helmets of professional football players and transmit the severity of a big hit to staff on the sidelines.


In the end, as MEMS drop in price and expand in capability, the opportunities are limited only by entrepreneurs' imaginations.


Ever teneppe 17767425
Materia: EES
Fuente:http://www.forbes.com/2008/04/22/mems-applenintendo_leadership_clayton_in_jw_0421claytonchristensen_inl.html

Resonadores basados en CMOS-MEMS

Resonadores basados en CMOS-MEMS
Vectron y Discera colaboran en el desarrollo de nuevos temporizadores de MEMS

Discera y Vectron International, líderes mundiales en soluciones innovadoras de temporización y control de frecuencia, han anunciado en "Electronica" que trabajarán conjuntamente para hacer que los osciladores de MEMS sean una realidad para los fabricantes de dispositivos electrónicos.

Los resonadores basados en CMOS-MEMS son una tecnología verdaderamente rompedora que permite a las empresas de electrónica eliminar los obstáculos de coste y escalabilidad con los que se encuentran actualmente los consumidores. La tecnología de los MEMS permite superar algunos de los problemas existentes en la actualidad y, al mismo tiempo, abre una puerta a futuras aplicaciones (antes imposibles) por medio de la tecnología de microfabricación. Los MEMS prometen revolucionar casi todas las categorías de productos reuniendo la microelectrónica del silicio con la tecnología del micromecanizado. Utilizando osciladores CMOS en los MEMS, los fabricantes de dispositivos electrónicos de consumo, unidades de disco duro y otros dispositivos contarán con una serie de beneficios entre los que se incluyen una menor necesidad de espacio físico, unos tiempos de espera más cortos, una construcción más robusta y menos gasto de energía. Además, esta tecnología puede avanzar para soportar aplicaciones de alta precisión.

"Creemos que los osciladores de MEMS son una parte importante en el futuro del mercado de control de frecuencias", afirma Ed Grant, vicepresidente de operaciones y productos de Vectron en Norteamérica. "Aunque la promesa de los osciladores de MEMS ha estado ahí durante años, ningún vendedor ha sido capaz de demostrar su fiabilidad ni su manufacturabilidad. Creemos que Discera sí está en posición de cumplir esta promesa. Esperamos trabajar conjuntamente con Discera utilizando nuestras habilidades complementarias para crear productos destacados en el sector".

La tecnología del resonador PureSilicon de Discera es un componente fundamental que se puede utilizar para crear dispositivos electrónicos de consumo pequeños, de bajo coste y totalmente integrados, así como productos de telecomunicaciones como los osciladores, filtros y componentes RF. Los productostemporizadores basados en los resonadores CMOS-MEMS PureSilicon de Discera ofrecen ventajas significativas en cuanto a tamaño, potencia y coste, junto con una calidad y una fiabilidad excepcionales. Durante Electronica, Discera mostrará su tecnología en el stand de Vectron (Hall B5, stand 237). Discera mostrará la salida de vídeo de una cámara estándar cuyo tradicional oscilador de cristal ha sido reemplazado con un oscilador de MEMS de Discera.

"Estamos muy contentos de trabajar con Vectron", afirma Venkat Bahl, vicepresidente de marketin de Discera, Inc. "Trabajar con Vectron, un líder en el sector, le da un enorme impulso al campo de los osciladores de MEMS en general y a Discera en particular. Ambas compañías están bien posicionadas en el mercado y pueden aprovecharse mutuamente de los puntos fuertes de la otra con el fin de crear y fortalecer una posición dominante en el mercado".


Ever teneppe 17767425
Materia: EES
Fuente:http://avances-nanotecnologia.euroresidentes.com/2006/11/resonadores-basados-en-cmos-mems.html